
Autocomplete 3D Sculpting

MENGQI PENG, University of Hong Kong
JUN XING, University of Hong Kong and USC Institute for Creative Technologies
LI-YI WEI, University of Hong Kong and Adobe Research

(a) 18/14 (b) a→ c (c) 94/66 (d) c→ e (e) 176/124 (f) e→ g

(g) 308/206 (h) g→ i (i) 360/274 (j) i→ k (k) 472/340

Fig. 1. Our autocomplete 3D sculpting system.With an authoring interface similar to common sculpting tools, our system detects potential repetitions and
provides suggestions for which the users can accept, partially accept, or ignore. Shown here is an editing sequence with the number of cumulative manual and
autocomplete strokes indicated below each stage, and in-between steps with some hints visualized in yellow colors, including overlapped/non-overlapped
strokes for both surface and freeform types. Other functionalities include workflow clone and automatic camera view control. Please refer to the accompanying
videos for recorded actions, including all edits, hints, and camera views.

Digital sculpting is a popular means to create 3D models but remains a
challenging task. We propose a 3D sculpting system that assists users, es-
pecially novices, in freely creating models with reduced input labor and
enhanced output quality. With an interactive sculpting interface, our system
silently records and analyzes users’ workflows including brush strokes and
camera movements, and predicts what they might do in the future. Users
can accept, partially accept, or ignore the suggestions and thus retain full
control and individual style. They can also explicitly select and clone past
workflows over output model regions. Our key idea is to consider how a
model is authored via dynamic workflows in addition to what is shaped
in static geometry. This allows our method for more accurate analysis of
user intentions and more general synthesis of shape structures than prior
workflow or geometry methods, such as large overlapping deformations. We
evaluate our method via user feedbacks and authored models.

CCS Concepts: •Human-centered computing→User interface design;
• Computing methodologies→ Shape modeling;

Additional Key Words and Phrases: workflow, autocomplete, clone, beautifi-
cation, sculpting, modeling, user interface

Authors’ addresses: Mengqi Peng, University of Hong Kong; Jun Xing, University of
Hong Kong, USC Institute for Creative Technologies; Li-Yi Wei, University of Hong
Kong, Adobe Research.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3197517.3201297.

ACM Reference Format:
Mengqi Peng, Jun Xing, and Li-Yi Wei. 2018. Autocomplete 3D Sculpting.
ACM Trans. Graph. 37, 4, Article 132 (August 2018), 16 pages. https://doi.org/
10.1145/3197517.3201297

1 INTRODUCTION
Digital sculpting is a popular means to create 3D models with di-
verse styles and organic shapes. The authoring practices often in-
volves repetitive applications of large, overlapping deformations
interleaved with small, detailed strokes. Such cumulative process
can demand significant expertise and efforts, and be particularly
daunting for novice users.
Significant research has been devoted to analyzing and synthe-

sizing 3D geometry based on shapes [Chaudhuri and Koltun 2010;
Funkhouser et al. 2004; Mitra et al. 2013; Takayama et al. 2011] or
procedures [Emilien et al. 2015; Nishida et al. 2016]. These meth-
ods mainly focus on what the model is shaped instead of how it
is authored, and thus cannot readily apply to iterative, dynamic
sculpting of general shapes. The processes of how models are au-
thored by users, termed workflows, contain rich information that
can facilitate a variety of tasks such as visualization [Denning and
Pellacini 2013; Denning et al. 2015], view selection [Chen et al. 2014],

ACM Trans. Graph., Vol. 37, No. 4, Article 132. Publication date: August 2018.

https://doi.org/10.1145/3197517.3201297
https://doi.org/10.1145/3197517.3201297
https://doi.org/10.1145/3197517.3201297

132:2 • Mengqi Peng彭梦琪, Jun Xing邢骏, and Li-Yi Wei魏立一

Fig. 2. User interface of our system. The interface consists of a sculpting
canvas (left) and a widget panel (right). The widget panel provides the usual
sculpting tools, brush parameters such as size, and mode controls unique to
our autocomplete system.

and collaboration [Calabrese et al. 2016; Salvati et al. 2015]. How-
ever, it remains unclear whether and how such workflows can help
automate interactive sculpting of 3D models.
We propose a 3D sculpting system that assists users in creating

organic models with reduced input workload and enhanced output
quality. With a brushing interface similar to existing sculpting tools,
our system analyzes what users have done in the past and predicts
what they might do in the future. The predictions are visualized as
suggestions over the output model without disrupting user prac-
tices. Users can choose to accept, partially accept, or ignore the
suggestions, and thus maintain full control. They can also select
prior workflows from the model and clone over other regions.
The rich information contained in the workflows allows our

method to outperform prior methods based on only geometry, such
as handling overlapping strokes, automating vertex locking, reapply-
ing clones, and maintaining intermediate strokes relationships even
after significant geometry deformations by later strokes. Similar to
existing sculpting tools, our interface provides surface strokes for
local details such as displacements and freeform strokes for large
scale changes such as extrusions. Our system is intended for users
with varying levels of expertise and models of different types with-
out requiring pre-existing geometry database or procedural rules.
In addition to sculpting strokes, our method also considers camera
movements, which are often repetitive, predictable, and correlate
well with the underlying shapes and brush strokes [Chen et al. 2014].

Inspired by recent works on predictive user interfaces that analyze
repetitions and workflows to assist 2D drawings [Kazi et al. 2012;
Xing et al. 2014] and animations [Xing et al. 2015], our premise is
that 3D sculpting often consists of repetitive user actions and shape
structures, and thus both the input process and the output structure
can be predictable.

However, there are several key differences between 2D sketching
and 3D sculpting that prevent trivial extensions of prior methods
[Xing et al. 2014, 2015] for our applications. 2D sketching operates
on a simple 2D static planar canvas, the user strokes do not inter-
act with one another, and remain there once placed. 3D sculpting

dynamically deforms the base object shape, the later strokes can
overlap and alter earlier ones including both visible/explicit mesh
shapes and invisible/implicit stroke relationships, and similar in-
put strokes can end up with dissimilar output structures due to
intervening edits. To address these challenges, we synchronize all
intermediate workflows with dynamic domain changes, and analyze
how existing geometry shapes and dynamic workflows relate to
one another to predict what the future workflows would be like,
including both sculpting strokes and camera movements.
We conduct a pilot user study to show that our system can help

users on both objective performance and subjective satisfaction for
a variety of output models.

In summary, the main contributions of this paper are:
• A method that combines dynamic workflows and static ge-
ometry to reduce input labor and enhance output quality for
interactive 3D modeling;
• An autocomplete user interface for 3D sculpting with features
including hint, edit propagation, workflow clone, workflow
lock, and camera control;
• Algorithms that analyze and synthesize sculpting workflows
over general 3D shapes while adapting to dynamically chang-
ing base geometry and surrounding contexts.

2 PREVIOUS WORK
Data-driven and proceduralmodeling. Creatingmodels from scratch

is challenging, but similar objects or parts often already exist. An-
alyzing existing model geometry for novel synthesis has been an
active area of research [Funkhouser et al. 2004; Liu et al. 2017; Mitra
et al. 2013] encompassing a variety of topics, such as suggestion
[Chaudhuri and Koltun 2010], repetition [Bokeloh et al. 2011], sym-
metry [Mitra et al. 2006], style [Lun et al. 2016], fabrication [Schulz
et al. 2014], simulation [De Goes and James 2017], and functional
interaction [Hu et al. 2016]. Common model structures can also be
abstracted into procedural rules for offline or interactive modeling
[Ebert et al. 2002; Emilien et al. 2015; Nishida et al. 2016].

The outputs of these methods are naturally limited by the scopes
of the underlying data and procedures. Our method, in contrast,
aims to assist users to explore and create models [Cohen-Or and
Zhang 2016] in their individual styles and preferences.

Modeling interface. Popular modeling interfaces have been de-
signed for mechanic models (e.g. AutoCAD) and organic shapes
(e.g. ZBrush). Following the line of suggestive interfaces for 3D
drawing and sketching [Fan et al. 2013; Igarashi and Hughes 2001;
Tsang et al. 2004; Yue et al. 2017], our system aims for a traditional
sculpting interface with enhancement in analyzing, predicting, and
suggesting workflows. Inspired by Teddy [Igarashi et al. 1999], we
design our system to be interactive and friendly to novice users.

Workflow-assisted authoring. Workflows [Nancel and Cockburn
2014] have been investigated for various authoring tasks in 2D
image editing [Chen et al. 2011, 2016], sketching [Xing et al. 2014],
and animation [Xing et al. 2015], as well as in 3D modeling such
as texturing [Suzuki et al. 2017], visualization [Denning et al. 2011,
2015], revision control [Denning and Pellacini 2013], view selection
[Chen et al. 2014], and collaboration [Salvati et al. 2015]. These

ACM Trans. Graph., Vol. 37, No. 4, Article 132. Publication date: August 2018.

Autocomplete 3D Sculpting • 132:3

workflows can be recorded during authoring, or inferred a posteriori
[Fu et al. 2011; Hu et al. 2013; Tan et al. 2015].
As reported in [Santoni et al. 2016], even for complex objects,

the workflows often consist of predictable brush choices and opera-
tions. Our method analyzes 3D sculpting workflows to autocomplete
potential repetitions.

Our method is mainly inspired by prior 2D autocomplete methods
for sketches and animations [Xing et al. 2014, 2015]. However, these
2D autocomplete methods cannot be directly extended for 3D sculpt-
ing due to several major differences in design and mechanisms:
• Strokes: All 2D sketching and animation strokes lay on a plane.
3D sculpting strokes can lay on the surface (e.g. small-scale
details) or extend inward/outward towards the surrounding
space (e.g. large-scale freeform deformations).
• Domains: The base domains for sketching and animations
remain a static 2D plane. The base domains for 3D sculpt-
ing, which are the current shapes, coevolve with the editing
strokes.
• Inputs and outputs: In 2D sketching, input strokes exactly
form the output content thus repetitions are easier to iden-
tify. In contrast, the 3D sculpting stroke types (freeform or
surface), behaviors (overlap or separate), and relationships
(under different shape changes) are more complex and thus
more difficult to analyze.

Therefore, despite conceptual similarity to 2D autocomplete, our
system is the first to address the above challenges unique to 3D
sculpting for autocompletes.

3 DESIGN GOALS
Among the four design principles suggested by Schneiderman [2007]
for creative support tools, “provide rich history-keeping” and “de-
sign with low thresholds, high ceilings, and wide walls” are most
relevant to our context of 3D sculpting. To follow these principles, a
core problem of ourwork is the relationship between user workflows
and final outputs. Our premise is that how users create the models
can provide helpful cues to design flexible and friendly sculpting
user interfaces. To better understand the validity of the premise, and
collect insights for our work design, we observe sculpting processes,
including multiple online videos/tutorials and onsite observations,
of users with different levels of expertise, ranging from novices to
professionals. The insights and discussions led us to the following
design goals of our sculpting system.
D1: Leverage common sculpting practices and preserve individual

styles
Based on our observations, users, either novices or professionals,

tend to sculpt in a spatial and temporal coherent fashion. They like
to focus on one local region at a time, showing a preference for
short strokes. These observations are consistent with prior studies
such as [Chen et al. 2014; Santoni et al. 2016].

On the other hand, sculpting also exhibits high degrees of freeform
and personal styles. Our observations show that individual users
have their own styles and preferences, including stroke size, length,
direction, shape, and pressure. In a nutshell, 3D sculpting is a process
of accumulating strokes, thus individual preference significantly
influences final output style.

Our assisted system, therefore, should leverage general sculpting
practices while preserving individual styles.
D2: Reduce workload from repetitive operations
We observed that sculpting often contain repetitive stroke be-

haviors, either overlapped or independent ones, including larger
scale base mesh formation and details additions, and the sculpting
sessions often contain repetitive camera movements. Most users
achieve these through manual operations. It is also common for
users to repeat batch strokes from one region to other regions.

Some sculpting tools, such as ZBrush [Pixologic 2015] and Mud-
box [Autodesk 2014], provide data-driven features like stamping
and stenciling to place repetitive patterns. However, these might
not be easy for non-experts to understand and control, compared
to direct sculpting strokes. Users also need to find the intended
patterns from existing data.
To reduce repetitive manual operations, our system should ana-

lyze user behaviors and intentions from their workflows.
D3: Provide fluid and intuitive user control
Complex 3D user interface control/configuration is one of the

major reasons that make 3D sculpting challenging for most users,
which generally requires years of experience to master. However,
there are an increasing number of users joining the sculpting com-
munity. We observed that most users will find it difficult to learn
sculpting if starting from tools which provide powerful but complex
features and controls.
Therefore, another design goal is to provide our new features

under a familiar framework and friendly user interface.

4 USER INTERFACE
To satisfy the design goals in Section 3, the user interface (Figure 2)
of our prototype sculpting system follows the brush model as in
popular digital sculpting tools such as Blender [Blender Foundation
2016], Sculptris [Pixologic 2011], Zbrush [Pixologic 2015], Mesh-
Mixer [Schmidt and Singh 2010], etc. Our system supports surface
strokes for local details, and freeform strokes for large scale defor-
mations. Users can sculpt as usual while our system silently records
and analyzes the sculpting workflows. All stroke operations can be
combined with the main functions: hint, workflow clone, camera
control, and other features such as workflow lock.

4.1 Hint
Our system automatically analyzes users’ sculpting workflows on
the fly and predicts what they might sculpt in the near future. These
predictions are suggested as hints on our user interface. Different
from 2D sketching, 3D sculpting has more diverse stroke effects
depending on types (surface or freeform) and behaviors (independent
or overlapped/connected). All combinations of hints (type× behavior)
are supported by our system.
Figure 3 shows an example where the user is sculpting indepen-

dent detailed strokes on an object. As more strokes are added, our
system automatically analyzes the past strokes and predicts what
strokes the user might want to perform next, as shown in Figure 3b.
The suggestions are shown transparently over the object surface.
Users can ignore the suggestions and continue sculpting as usual,

ACM Trans. Graph., Vol. 37, No. 4, Article 132. Publication date: August 2018.

132:4 • Mengqi Peng彭梦琪, Jun Xing邢骏, and Li-Yi Wei魏立一

(a) user sculpting (b) hints

(c) accept all (d) brush select

Fig. 3. Independent hint examples. During user sculpting (a), our system
suggests potential future repetitions as displayed in transparent yellow (b).
Users can ignore the hints and continue sculpting, accept all hints via a
hot key (c), or partially select a subset of the independent hints (d) with a
selection brush as shown in transparent blue.

accept all the suggestions via a hot key (Figure 3c), or partially select
the suggestions (Figure 3d).
As a main difference from 2D sketching, sculptors often iterate

over the same area [Santoni et al. 2016], including multiple over-
lapped strokes for large deformation (Figure 4a) or refinement (Fig-
ure 4d), as well as connected (Figure 4g) strokes for long freeform
feature formation. We also provide such hints as shown in Figure 4.
Users can customize the number of continuous overlapped repe-
titions to be accepted for faster feature creation, such as three in
Figure 4. The suggestions are continuously updated in real-time
according to user inputs.

Our hint function can also propagate a single source edit to multi-
ple targets with individual adaptation by considering the contextual
relationships among surface or freeform strokes. It is similar to
the “find and replace” features of modern IDEs and graphical illus-
trations [Kurlander and Bier 1988; Kurlander and Feiner 1992a,b].
Examples are shown in Figure 5. Users can turn this feature on or
off independent from local hints.

4.2 Workflow Clone
The clone tool is common among interactive content authoring
systems. Prior methods mostly clone output content such as illus-
trations [Kazi et al. 2014, 2012], images [Pérez et al. 2003], textures
[Sun et al. 2013], or geometry [Takayama et al. 2011]. The methods
in [Xing et al. 2014] can clone intermediate sketch workflows. Our
system allows users to clone sculpting workflows with more infor-
mation and options than cloning static geometry, with clone effects
that adapt better to the user intentions and geometry shapes. Via our
brushing interface, users can select source and target regions, and
parameters such as positions, sizes, and directions. Similar to prior

(a) overlap clay ops (b) overlap hints (c) accept ×3

(d) overlap crease ops (e) overlap hints (f) accept ×3

(g) connected drag ops (h) connected hints (i) accept ×3

Fig. 4. Overlapped and connected hint examples. For such overlapped surface
hints and connected long freeform stroke hints, user can select the number
of hints by pressing the number of continuous hints to be accepted. For
example, users can achieve the effect in (c), (f), and (i) at one go with selected
number of three. The accept hot key is the same as in Figure 3c.

clone tools [Kloskowski 2010], our system previews the clone out-
comes for which users can accept or ignore. An example is shown in
Figure 6. Furthermore, our workflow clone can be applied to already
cloned regions, which is difficult to achieve via geometry clone.

4.3 Camera Control
Camera control is an integral part of 3D content authoring such
as drawing [Ortega and Vincent 2014] and sculpting [Chen et al.
2014], which can also be quite tedious and repetitive in addition to
brush strokes. Fortunately, similar to sculpting operations, camera
controls also tend to be predictable [Chen et al. 2014].

We provide a basic camera control mode that automatically moves
the viewpoints along with the suggested hints (Section 4.1). This
choice is inspired by the observation in [Chen et al. 2014] that users
often view the target sculpting regions frontal-parallel, and thus
more natural and less disorienting for users than other forms of
camera control. Users can quickly press a hotkey to return to the
original viewpoint. They can also turn this mode on or off depending
on their preferences. One example is shown in Figure 7.

ACM Trans. Graph., Vol. 37, No. 4, Article 132. Publication date: August 2018.

Autocomplete 3D Sculpting • 132:5

(a) hints (b) accept all

(c) hints (d) accept all

Fig. 5. Edit propagation examples. The hints (yellow) can appear in multiple
compatible targets from a single editing source (left), from which the users
can accept, ignore, or brush select. This applies to both surface (top) and
freeform (bottom) strokes.

(a) surface copy source (b) surface paste target

(c) freeform copy source (d) freeform paste target

Fig. 6. Workflow clone examples. The red/green strokes mark the clone
sources/targets. The clone results are previewed as yellow in (b) and (d)
for the users to partially or fully accept. The clone can be applied to both
surface (top) and freeform (bottom) strokes, and can adapt to different clone
source/target sizes/lengths and different source/target base geometry.

4.4 Additional Features

(a) before (b) after

Fig. 7. Camera control example. The camera automatically adjusts the view-
point from (a) according to the suggested strokes in (b).

(a) sculpting viewpoint (b) shifted viewpoint

Fig. 8. Occlusion example. The blue and red strokes are predictions from
the three previous sculpting strokes (bottom), with and without considering
occlusion. (a) is the original sculpting view, and (b) shifts the view to show
the predicted strokes underneath the occlusion.

Occlusion. Occlusion handling is another major difference be-
tween 2D and 3D content authoring such as painting [Fu et al. 2010].
Our system considers geometry occlusion for sculpting strokes
predictions and suggestions. As exemplified in Figure 8, with sug-
gestions predicted on the view-plane by [Xing et al. 2014, 2015],
even simple surface propagation may reside on the wrong part of
the occluding geometry, as shown in the red strokes. Our system
considers the underlying shape and propagates the predictions more
accurately, as shown in the blue strokes.

Lock. Locking is an option under some digital sculpting tools (e.g.
[Blender Foundation 2016]) to keep some parts of the model fixed
while users manipulating other parts. This feature, while useful, can
be tedious and difficult for users, especially novices. In addition to
future operations, our system can also predict what might need to
be locked based on workflows, as exemplified in Figure 9b; such
scenarios can be challenging to analyze via geometry only. This
locking mechanism can be applied to not only existing geometry as
described above but also future geometry predicted by our system
which cannot be manually locked, as shown in Figure 9c. Users can
easily enable or disable the locking effects via a hot key and thus
maintain full control.

ACM Trans. Graph., Vol. 37, No. 4, Article 132. Publication date: August 2018.

132:6 • Mengqi Peng彭梦琪, Jun Xing邢骏, and Li-Yi Wei魏立一

unlock lock

(a) initial manual stroke

unlock lock

(b) more manual strokes and hints

unlock lock

(c) after accepting hints

Fig. 9. Workflow lock. After a manual stroke in (a) under the symmetry mode, the user went on to place two more strokes in (b). The yellow parts indicate
suggested hints. For comparison, the left side has no workflow lock; notice how earlier strokes can be unintentionally deformed by the later strokes. Our
workflow lock can prevent this from happening for both existing geometry and accepted hints, as shown on the right side of (c). Note that the predicted
strokes (yellow) are always correct, with or without workflow lock. However, when the user accepted the hints, they will play out in the workflow order as in
manual strokes. Thus, without workflow lock, later hint strokes can still deform earlier hint strokes.

Table 1. Notations used in our algorithm descriptions.

Symbol Meaning
b brush stroke
s a sample of a brush stroke b

u(s) all parameters of sample s
p(s) 3D position of sample s
p̈(s) locally parameterized position of sample s
a(s) appearance parameters of sample s
t(s) temporal parameters of sample s
n(s) spatial-temporal neighborhood of sample s
n(b) spatial-temporal neighborhood of brush stroke b
b′ a neighborhood stroke of brush stroke b
s′ a neighborhood sample of sample s

û(s′, s) differential of u(s′) and u(s)
I input sequences of sculpting strokes
bo next predicted stroke
bo,i initialization for bo
u(bo) contextual prediction for bo

5 METHOD
We describe our algorithms behind the autocomplete sculpting in-
terface in Section 4. Notations are summarized in Table 1 for easy
reference.

5.1 Representation
Stroke. Our system supports two main types of brush strokes

as in common digital sculpting systems: surface strokes for small
scale displacements (e.g. clay, crease, smooth, flatten), and freeform
strokes for larger scale shape deformation (e.g. drag and grab).

Users sculpt via a tactile interface (e.g. pen/touch tablet) with dif-
ferent tool types and parameter settings. Each sculpting brush will
determine the affected regions on the object surface to undergo var-
ious local transformations, including freeform upward/downward
grabbing, coarse/fine dragging, and on-surface relief, engraving,
crease, smoothing, flattening, etc. These main sculpting effects are
supported by our system as shown in Figure 10.
Unlike 2D sketching where input strokes directly form the final

content with the underlying plane being static, 3D sculpting is a
dynamic transformation process with the object shapes created via
various operations with significant different effects.

(a) upward grab (b) downward grab(c) coarse extrusion (d) fine extrusion

(e) relief (f) engrave (g) crease (h) smooth

(i) flatten

Fig. 10. 3D sculpting stroke effects and user controls. We
support a rich toolset similar to those popular sculpting
tools. The red lines indicate user input stroke paths for
the respective effects. Notice the relationships between
invisible input strokes (red lines with arrows indicating
the directions) and actual visible shape changes.

a
b
c
d
e

(a) surface stroke

a
b
c
d
e

(b) freeform stroke

Fig. 11. Brush stroke types. A surface stroke (a) has all samples on the object
surface, such as the 5 surface samples sa , sb , sc , sd , and se . A freeform
stroke (b) has the first sample sa on the object but the rest for 3Dmovements
such as extrusion sa → sb → sc → sd → se .

Sample. We represent each brush stroke b as a collection of point
samples {s}. Each sample s is associated with a set of attributes u:

u(s) = (p(s), a(s), t(s)) , (1)

ACM Trans. Graph., Vol. 37, No. 4, Article 132. Publication date: August 2018.

Autocomplete 3D Sculpting • 132:7

where p(s) is the 3D position of s , a(s) is a set of appearance pa-
rameters (such as size, type, and pressure) and geometry signatures
(such as normal and curvature), t(s) indicates temporal parameters
that include the global time stamp and a sample-id for the relative
position within the stroke.

As shown in Figure 11, for a surface stroke b, its samples’ positions
p(b) = {p(s)}s ∈b all lay on the object surface; while for a freeform
stroke, p(b) consists of two parts: the first sample is on the surface,
and the rest (∥p(b)∥−1) samples are in 3D free space withmovement
directions controlled by the users.

Mesh. We adopt a mesh-based representation with two operators,
sculpt c and mesh m, to support geometry and topology changes.
A meshM is represented by a set of elements including vertices,
edges, and faces. Each sculpt operator c in Figure 10 applies specific
geometry transformation to mesh elements, such as vertex positions,
within a finite support defined by the brush radius, as in traditional
sculpting brush pipeline [Calabrese et al. 2017]. A mesh operator m
can change the underlying mesh resolution and topology by adding
or removing mesh elements. The result of each brush stroke over
M is the joint effect of c with m:

M ← (c ⊗ m) (M), (2)

where ⊗ combines c and m to achieve Blender-Dyntopo-like or
Sculptris-like adaptive tessellation effect [Hernandez 2011], as shown
in Figure 12.

b1

b2 b3

b4

Fig. 12. Mesh sculpting effects. A sculpt operator c such as drag with inactive
m can influence mesh geometry but not topology as shown in b1 and b3
with different brush radii. The joint effect of c with active m can change
mesh resolution and connectivity as shown in b2 and b4.

5.2 Measurement
A core component for our method is to measure similarity between
3D brush strokes based on their spatial-temporal neighborhoods.
This similarity in turn enables our method to detect repetitions, sug-
gest future edits, clone workflows, and auto-lock strokes. However,
unlike [Xing et al. 2014, 2015] where the underlying domain is a
fixed 2D plane (drawing canvas), our base domain is a 3D object
under dynamic modification. Thus, all definitions of neighborhood
and similarity must be conditioned on 3D object surfaces.

Neighborhood. We define the neighborhood n (s) of a sample s as
the set of all samples within its spatial-temporal vicinity analogous
to the spatial-temporal neighborhoods in [Ma et al. 2013]. Each
spatial neighborhood is oriented with respect to a local frame o

associated with s . The temporal neighborhood is causal and contains
only samples placed before s .

Brush strokes are composed of samples and can capture the high-
level relationships between one another. Thus we use brush strokes
as the fundamental units for sculpting workflow analysis and syn-
thesis. The neighborhood of a stroke b is defined as the union of its
sample neighborhoods:

n(b) =
⋃
s ∈b

n(s) (3)

Similarity. For each neighborhood sample s ′ ∈ n(s), we define
its differential with respect to s as:

û(s ′, s) = *.
,

wpp̂(s ′, s)
waâ(s ′, s)
wt t̂(s ′, s)

+/
-
, (4)

where p̂, â, and t̂ represent the sample pair differentials in position
p, appearance a, and temporal parameters t defined in Equation (1),
andwp,wa,wt are the corresponding scalar weightings.

We compute the sample position differentials p̂(s ′, s) via:

p̂(s ′, s) = p̈(s ′) − p̈(s), (5)

where p̈(s)/p̈(s ′) is the local position of s/s ′ with frame o(s) as
described in Section 5.3 and relates to the global p(s) via a coordinate
transformation.

From Equation (4), we define the differential between two strokes
b′ and b via their constituent samples:

û(b′, b) =
{
û(s ′, s) |s ′ =m(s) ∈ b′, s ∈ b

}
, (6)

wherem is the matching sample computed via the Hungarian algo-
rithm as in [Ma et al. 2013; Xing et al. 2015].
From Equation (6), we can compute the distance between two

stroke neighborhoods n(bo) and n(bi) as follows:

∥n(bo) − n(bi)∥2 = ∥û(bo , co) − û(bi , ci)∥2

+
∑

b′o ∈n(bo),b′i ∈n(bi)

∥û(b′o , bo) − û(b
′
i , bi)∥

2, (7)

where the first term measures the distance between the two strokes
bo and bi with respect to their central samples co and ci :

û(b, c) = {û(s, c), s ∈ b} , (8)

and the second term computes the distances between their neigh-
borhood strokes with respect to bo and bi . Thus, Equation (7) is
computed in relative instead of absolute coordinates. The stroke
pairs b′o and b′i are matched via the Hungarian algorithm as well.

5.3 Parameterization
Surface stroke parameterization. We extend the stroke parameter-

ization method in [Schmidt 2013] for our surface strokes. Each sur-
face stroke is parameterized by the surface normal as the z-direction
and the stroke path as the y-direction measured by the geodesic
arc-length t . The x-direction is measured by the geodesic distance d .
We then apply the single-pass forward propagation [Schmidt 2013]

ACM Trans. Graph., Vol. 37, No. 4, Article 132. Publication date: August 2018.

132:8 • Mengqi Peng彭梦琪, Jun Xing邢骏, and Li-Yi Wei魏立一

to estimate the parametrization for any sample s within distance r
of the stroke, as illustrated in Figure 13.

p̈(s) = Ps (s) = (ts ,ds) (9)

z
y

x

x

yz r
(ts, ds)

surface stroke

freeform stroke

Fig. 13. Stroke parameterizations.

Freeform stroke parameterization. Unlike the surface strokes, freeform
strokes do not adhere to the object surfaces. Thus the method in
[Schmidt 2013] cannot directly apply. However, we can extend it
into the freeform space as follows. We use the stroke path as the
z-direction similar to the y-direction for the surface strokes, pa-
rameterized by arc-length. The cross-product of the z-direction and
the camera look-at direction (non-parallel to z-direction for sculpt-
ing) for each stroke sample point forms the y-direction, and the
x-direction is the cross product of y and z directions. This is illus-
trated in Figure 13. Unlike surface stroke parameterization which is
2D, the freeform stroke parameterization is 3D:

p̈(s) = Pf (s) = (xs ,ys , zs) (10)

5.4 Synthesis
In order to synthesize the predictions interactively, we extend the
texture optimization methodology [Kwatra et al. 2005; Ma et al. 2013;
Xing et al. 2014] with particular focus on speed and geometry. With I
as the current sequences of strokes ordered by their time-stamps, we
synthesize the next stroke bo by minimizing the following energy:

E(bo ; I) = min
bi ∈I
|n(bo) − n(bi) |2 + Ψ(bo) + Θ(bo) (11)

The first term identifies the existing bi with similar neighborhood to
bo , as measured in Equation (7). The second term corresponds to the
context constraint predictions u(bo) calculated from our workflow
analysis in Section 5.5. The last term denotes optional, applicant-
dependent specifications that can be supplied by the users.

As summarized in Algorithm 1, to synthesize the next predicted
stroke bo with good quality, our solver goes through three main
steps: initialization in Section 5.4.1 provides a set of candidate stroke
{bo,i }; then each bo ∈ {bo,i } goes through the search step in Sec-
tion 5.4.2 and the assignment step in Section 5.4.3. The one which
has the least energy in Equation (11) will be considered as most
suitable and selected to be the predicted stroke.

To predict multiple instead of only one stroke as described above,
similar to other suggestive systems like [Xing et al. 2014], we can
include predicted strokes into I for incremental continuous itera-
tions.

function bo ← PredictNextStroke(I)
// bo : predicted next stroke
// I: input sequence of strokes ordered by time-stamps
{bo,i } ← Initialize(I) // Section 5.4.1
foreach bo ∈ {bo,i } do
{bi } ← Search(bo , I) // Section 5.4.2
u(bo) ← ContextAnalysis({bi }, bo) // Section 5.5
Ψ(bo), Θ(bo) ← Assign(u(bo), bo) // Section 5.4.3

end
bo ← argminbo ∈{bo,i } E(bo ; I) // Equation (11)
return bo

end function

function {bo,i } ← Initialize(I) // Section 5.4.1
b′o ← last sculpting stroke in I
{b′i } ← candidate matching strokes of b′o
foreach b′i ∈ {b

′
i } do

bi ← next stroke of b′i
û(bo,i , b′o) ← û(bi , b′i)
bo,i ← argminbo,i E(bo,i ; b

′
o , bi , b′i) // Equation (13)

end
return {bo,i }

end function

function {bi } ← Search(bo , I) // Section 5.4.2
{bti } ← temporal matching bo , I
{bi } ← spatial filtering on {bti }
return {bi }

end function

function Assiдn(u(bo), bo) // Section 5.4.3
if u(bo) then // explicit or implicit context detected

Ψ(bo) ← Equation (15)
endif
if extra sculpting effects configured then

Θ(bo) ← optional specifications c(bo)
endif

end function

Pseudocode 1. Overview of synthesis algorithm.

5.4.1 Initialization. We initialize future strokes based on local
similarity with the existing strokes. For the last sculpted stroke b′o ,
we identify a candidate set of matching strokes {b′i } by measuring
the local neighborhood similarity. Each b′i provides an initialization
bo,i via its next stroke bi :

û(bo,i , b′o) = û(bi , b′i) (12)

Each bo,i is computed depending on the brush stroke type −
surface or freeform, due to their different parameterizations as de-
scribed in Section 5.3. For surface strokes, Equation (12) is computed
on the local surface parameterization. For freeform strokes, Equa-
tion (12) is computed by a two-step process: deciding the starting
point on the surface, followed by the freeform space movement
from the starting point. More specifically, each b′i provides relative

ACM Trans. Graph., Vol. 37, No. 4, Article 132. Publication date: August 2018.

Autocomplete 3D Sculpting • 132:9

sample position differential with its next stroke bi per its brush type
as in Equation (5). Then within the local parameterization space
of b′o , these relative differential will be transformed to compute
initialized sample positions of bo,i . This is visualized in Figure 14.

b'1 b'2
b'3
b'o bo,1

(a) surface stroke initialization

b'1b'2 b'3 b'o bo,1

(b) freeform stroke initialization

Fig. 14. Synthesis initialization. For both (a) and (b), the three blue strokes
b′1,2,3 are placed in order, before the current stroke b′o shown in red. Each
of b′1,2,3 can provide a prediction based on its next stroke b1 = b′2, b2 = b′3,
b3 = b′o , and b′o via Equation (12). For example, the green stroke bo,1 is
predicted from b′1 via û(bo,1, b

′
o) = û(b1 = b′2, b

′
1).

We then improve each bo,i further via neighborhood optimization,
as follows. For clarity, we use bo as the variable to optimize bo,i for
each matching b′i of b

′
o , by minimizing the energy:

E(bo ; b′o , bi , b
′
i) =

∑
so ∈bo

∑
s ′o ∈b′o

κ (si , s
′
i)
���u(so) − u(s

′
o) − û(si , s

′
i)
���
2

si =m(so) ∈ bi , s ′i =m(s ′o) ∈ b
′
i

(13)

where κ (si , s ′i) is a weighting parameter inspired by [Ma et al. 2013]
for Gaussian falloff with σp set to 10:

κ (si , s
′
i) = exp *.

,

−
���p(si) − p(s

′
i)
���
2

σp

+/
-

(14)

5.4.2 Search. This step aims to minimize the first term in Equa-
tion (11). For each initialization bo ∈ {bo,i } obtained during the ini-
tialization step, within its local spatial-temporal window, we search
for the matching strokes {bi } whose neighborhood are similar to
n(bo) by measuring the neighborhood similarity in Equation (7).
Similar to [Xing et al. 2014], we perform temporal matching fol-

lowed by spatial matching instead of matching with the whole
temporal-spatial neighborhood to accelerate the searching pro-
cess. In the first step, we conduct temporal matching to search
the candidate strokes. Instead of selecting only one best match,
for more robust optimization we search for multiple candidates
{bti } whose neighborhood dissimilarity |n(bo) − n(bi) |2 is lower
than 2 ��n(bo) − n(b′′)��2, where b′′ has the lowest dissimilarity value.
From this candidate set, similarly, we use spatial neighborhood for
further filtering/matching to get the finalized {bi }.

5.4.3 Assignment. This step finds the optimal b∗o ∈ {bo,i } that
minimizes the energy in Equation (11), given the {bi } identified for
each bo ∈ {bo,i } for the first term in the search step.

The second term in Equation (11) considers the prediction u(bo)
for the properties of bo after performing context analysis (Sec-
tion 5.5) on the candidate strokes {bi } extracted in the search step.
We utilize u(bo) as an extra constraint for synthesis:

Ψ(bo) =
∑
so ∈bo

|u(so) − u(so) |2 (15)

The last term, Θ, allows users to configure various parameter set-
tings for various effects such as dots as in [Pixologic 2015]. This can
be achieved by adding constraints c for various sample attributes:

Θ(bo) =
∑
so ∈bo

|u(so) − c(so) |2 (16)

Together, the search and assignment steps decide the next stroke
b∗o via minimizing Equation (11) with expansions in Equations (7),
(15) and (16).

5.5 Context Analysis

s1
s2

s3
s4
s5

k1

?

(a) single explicit context k1

k1k2k3

s1

s2

s3?

u1

u2

u3

v1
v2
v3

(b) multiple explicit contexts k1,2,3

p1

p2
p3

p4

(c) implicit context correspondence

u1

u2
u3

u4

v1

v2v3

v4

w1

w2

w3

t1
t2t3

t4

?

(d) implicit contexts

Fig. 15. Context analysis examples. Our system considers two kinds of con-
texts: explicit (top) and implicit (bottom) based on workflow and geometry.
In (a), the strokes s1 to s4 are aligned to a common long stroke k1, which
serves as a shared explicit context to help predict s5. Intuitively, s5 relative
to k1 is the average of s1 to s4 relative to k1. In (b) there are multiple long
context strokes from which s3 can be predicted from u3 and v3. (c) shows
implicit geometry correspondences, such as the freeform extrusions p1,2,3,4
with similar geometry. This deduced implicit contexts are then used for
prediction in (d), where w3 may come from u3 (similar pattern and context)
but not v3 (different pattern) or t3 (different context).

Sculpting is a process of strokes accumulation. Strokes with differ-
ent types, lengths, directions can overlap and interact one another
via explicit stroke-level or implicit geometry-level correlations. This
is one major difference between 2D sketching and 3D sculpting. In

ACM Trans. Graph., Vol. 37, No. 4, Article 132. Publication date: August 2018.

132:10 • Mengqi Peng彭梦琪, Jun Xing邢骏, and Li-Yi Wei魏立一

our system, we consider these two kinds of contexts to help predic-
tion, as illustrated in Figure 15. For each predicted stroke bo , we
perform contextual analysis on the set of strokes that are similar to
bo . The strokes from these contexts provide the refined prediction
u(bo) for Equation (15).

The explicit/implicit contexts are orthogonal to surface/freeform
strokes, and thus all four combinations of explicit/implicit × sur-
face/freeform are possible. The explicit contexts are long brush
strokes while the implicit contexts are large geometry changes rela-
tive to nearby detailed strokes.

Explicit context. As illustrated in Figures 15a and 15b, a stroke
bo is often correlated with and constrained by the nearby set of
long strokes {b′o }, which we term the explicit context of bo . Via
Equation (6), such context can be represented as {û(b′o , bo)}.
Within the temporal-spatial neighborhood of bo , a stroke will

be considered as an explicit contextual stroke of bo only when it
is at least three times longer than bo . If no such long strokes are
detected, we skip this explicit context analysis step.
Intuitively, to predict how bo should be constrained by {b′o }, we

analyze how its matching strokes {bi } are constrained by their
context strokes. For each context stroke b′o ∈ {b′o } encoded by
û(b′o , bo), we perform statistics analysis for {û(b′i , bi)}, where each
û(b′i , bi) is a matching pair of û(b′o , bo). Note that b′i and b

′
o can be

the same or different strokes as shown in Figures 15a and 15b.
We analyze the statistics for {û(b′i , bi)} based on the constituent

matching samples pairs {û(s ′i , si)} (Equation (6)). Specifically, for
each sample pair {û(s ′o , so)} ∈ {û(b′o , bo)}, we extract its matching
sample-pairs {û(s ′i , si)} from {û(b

′
i , bi)}, as shown in the dash lines

in Figures 15a and 15b. The sample differences are computed accord-
ing to Equation (4). The average and standard deviation of {û(s ′i , si)},
{u(s ′i , si)} and {σ (s

′
i , si)}, serve as the prediction and stability for

the explicit context constraints in Equation (17).

Implicit context. In sculpting, users often form larger base regions
via freeform strokes followed by detailed strokes [Denning et al.
2015]. Since similar base regions are often decorated with similar
detailed strokes, we consider the geometry base of each detail stroke
bo as its implicit context.

Within the temporal-spatial neighborhood of bo , the intersected
geometry base of bo will be considered as implicit context only
when the freeform stroke radius leading to that base geometry
transformation is at least three times larger than the radius of bo . If
no underlying large geometry changes are detected for bo , we skip
this implicit context analysis step.

Once repeated large geometry changes are detected (often caused
by repeated large freeform strokes), we extract the central sample
from each affected region surface, as shown in Figure 15c. We use
the central samples of the corresponding base regions as the origin
of local parameterization [Schmidt et al. 2006]. For a bo , we find
the matching strokes {bi } with the corresponding base regions, and
use their constituent samples to compute the average and standard
deviation, {u(si)} and {σ (si)}, which serve as the predictions and
stability for the implicit constraint predictions in Equation (17). One
example is shown in Figure 15d.
In theory [Schmidt et al. 2006] is an isotropic parameterization

and thus can cause larger distortion than the anisotropic version

in [Schmidt 2013]. In practice, we have found it sufficient as the
distortion remains similar for repeated strokes even for elongated
deformation such as Figure 5d.
There are existing geometry-based methods (such as [Maximo

et al. 2011; Zelinka and Garland 2004]) to detect similar regions, but
we analyze workflows instead of geometry for better efficiency and
adaptivity for dynamic model changes. For example, the method in
[Maximo et al. 2011] is more suitable for static/finished mesh analy-
sis, but not for real time sculpting with dramatic mesh modifications
due to high computation cost.

Prediction. We obtain the contextual prediction u(bo) by opti-
mizing Equation (17), which combines the implicit and explicit
constraints based on the std-weighted mean differences.

E(u(bo)) =
∑

b′o ∈{b′o }

∑
so ∈bo

∑
s ′o ∈b′o

exp
(
−σ (si)

ϵ

)
|u(so) − u(si) |2

+ exp
(
−σ (si , s

′
i)

ϵ

)
���u(so) − u(s

′
o) − u(si , s

′
i)
���
2
(17)

u(bo) = argminE(u(bo)) (18)

5.6 Deployment
Based on the common framework in Section 5.4, we now describe
how to support various modes and options in our system.

Hint. The predicted and accepted strokes are rendered in light
transparent yellow and blue colors for visualization.

With the context analysis in Section 5.5, we can propagate edits
concurrently from one region to other similar regions. The propa-
gations are rendered in the same way as ordinary hints.

Normalization. For workflow clone, we normalize the stroke pa-
rameterization to support source and target regions specified with
different stroke lengths. Specifically, a sample s in a surface stroke
will be normalized to be within ts ∈ [−r/T , 1 + r/T],ds ∈ [−1, 1]
via:

ts ←
ts
T
, ds ←

ds
r
, (19)

whereT is the stroke arc length and r is the parameterization width
range, as illustrated in Figure 13.

We also normalize the sample-id to fall within [0, 1], where 0 and
1 represent the starting and ending positions of stroke b.

Workflow lock. The footprint of a stroke may unintentionally
influence nearby geometry. As exemplified in Figure 16 under sym-
metry mode, the current stroke can influence everything inside the
yellow sphere. Thus, the geometry created by the prior stroke bA2
can be undesirably deformed by the next stroke stroke bB2. This
is another key difference from [Xing et al. 2014, 2015] where the
synthesized sketching strokes are the final outputs.
While locking in common sculpting tools can address this issue,

it requires manual user intervention. Automatically deducing which
parts of the model to lock based on geometry alone can be chal-
lenging, as spatial information may not convey user intention. With
workflows, our method can directly associate all brush strokes with

ACM Trans. Graph., Vol. 37, No. 4, Article 132. Publication date: August 2018.

Autocomplete 3D Sculpting • 132:11

A1
B1

A2
B2

unlock lock

Fig. 16. Workflow lock based on spatial-temporal neighborhood. The strokes
are placed in the order bA → bB , and in a symmetry mode for illustration.
The left side shows general sculpting effect without workflow lock, the right
side is aided with workflow lock. Any samples of bA1 within the spatial-
temporal neighborhood of bB1 will be automatically locked, as exemplified
in the yellow region of the green sample in bB1.

the model geometry, and decide what to lock based on workflow
similarity as described in Section 5.2. Based on our experiments, we
adopt a simple strategy to lock all past workflows with a spatial-
temporal neighborhood of the current brush stroke, as shown in
Figure 16. This strategy works well when users sculpt in a spatially-
temporally coherent fashion, as they often do.

Camera control. As described in [Chen et al. 2014; Santoni et al.
2016], user brush strokes tend to correlate with camera movements
and thus can facilitate viewpoint selection. Therefore, different from
[Bae et al. 2008, 2009] which consider biomechanics constraints
on sketching curves and view-planes, our camera movement pre-
diction considers past strokes only. Our system stores all camera
states, including positions and orientations, as part of the sculpting
workflows. Thus, our method is able to predict camera movements
in addition to sculpting strokes as described in Section 5.4. In our
experiments we have found that excessive camera automation can
be disorienting to users. We thus expose only the basic mode of
piloting the camera viewpoint along with the predicted next brush
strokes.

f1

(a) first stroke

f1
f2

(b) second stroke

bos

f1
f2

(c) hint

Fig. 17. Long freeform strokes. When repetitions are detected for long
freeform features as shown in (a) and (b), suggestions within such long
feature are provided in (c). The starting sample of bo rendered in red is
connected with the ending sample of the previous stroke in (b).

Long freeform stroke. It is common to sculpt long freeform strokes
for organic features such as limbs Figure 4i. However, instead of
at one go, users often perform multiple connected or overlapped

strokes for iterative refinement [Santoni et al. 2016]. When repeti-
tions are detected for such long freeform features, we constrain the
starting sample position of bo to the ending sample position of just
completed stroke to ensure their connection (see Figure 17).

Neighborhood and search window. We set r dynamically to be 4×
the stroke radius. The spatial-temporal neighborhood of a brush
stroke includes its two previous temporal strokes and nearby spatial
strokes overlapping its parameterization region (Figure 13). For
the search step in Section 5.4.2, we search within a local temporal-
spatial window of 20 previous temporal strokes, and the same spatial
neighborhood window as above.

Neighborhood acceleration. To improve quality and speed, we
accelerate the neighborhood matching in Equation (7) by a two-
tiered sampling process for the brush strokes. Specifically, we first
place three samples uniformly over each stroke to select the most
similar candidate strokes, and continue with all samples to select
the best matches from the candidates.

3D acceleration. Interaction speed for sculpting is a major con-
cern [Calabrese et al. 2016] compared to 2D applications and low-
polygonal 3D hard-surface modeling [Salvati et al. 2015]. With more
strokes, the original base domain in sculpting will undergo signif-
icant mesh changes with increasing mesh elements via adaptive
subdivisions. The created models as shown in Figures 1 and 19 con-
tain around 360k faces faces on average, comparable with [Calabrese
et al. 2016]. To handle such high-resolution models unique in sculpt-
ing, we adopt the octree structure to support instant brush sphere
and ray lookups, such structure ensures fast mesh updates, as mesh
changes only needed to be made locally.

Hints number. For overlapped strokes, we set the predicted num-
ber of strokes to be 1, and users can customize the number of con-
tinuous overlapped strokes to be accepted as in Figure 4. For non-
overlapped strokes, users can also customize the number of predic-
tions;based on our experiments, setting the number of iterations
to be within [3, 6] works well in practice. By default, we set the
iteration number to be 3 for freeform predictions and 5 for surface
predictions; users can accept the hints via selection brush as in
Figure 3.

To improve the hint visualization quality, instead of directly dis-
playing the exact iteration number of hints, we optimize the hints
visualization with extra filtering: (1) when context as in Section 5.5
is detected for last sculpted stroke b′o , we filter predicted strokes that
are not constrained by contextual strokes; (2) when symmetry mode
is enabled, we further filter predictions that cross the symmetry
border.

Weights. For Equation (4), we set the position weightingwp to be
1. We setwa to be 1 if there is no Θ term in Equation (11), otherwise
we set it to be 0.1 and 0.9 for the neighborhood and Θ terms. The
wt includes global time stamp wt1 and sample-id wt2 . We set wt2
to be 1, andwt1 to be 100 for temporal neighborhood matching to
enforce the same sculpting order, and 0 for spatial neighborhood
matching. For Equation (17), we set ϵ to 10.

ACM Trans. Graph., Vol. 37, No. 4, Article 132. Publication date: August 2018.

132:12 • Mengqi Peng彭梦琪, Jun Xing邢骏, and Li-Yi Wei魏立一

6 USER STUDY
We have conducted a preliminary user study to evaluate the usability
and efficacy of our assisted sculpting system.

Setup. All tasks were conducted on a 13-in laptop with a Wacom
tablet. The study contains three sessions: tutorial, open creation,
and interview. The entire study took about one hour per participant.

Participants. Our participants include 2 experienced modelers
and 6 novice users with different levels of modeling experiences, to
help us gain insights during design iterations and gather feedbacks
during evaluation.

Tutorial session. The tutorial session is designed to help partici-
pants familiarize with the sculpting interface and various functions
of our system. The tasks consist of manipulating various sculpt-
ing parameters such as type, radius size, pressure, and direction;
performing initial base shape formation via large-scale operations,
adding details via different surface tools; and moving the user view-
points via camera control. To accelerate the learning process, we
play a recorded UI introduction video to participants, followed with
more detailed introduction on how to use different functions via
live demonstrations by the authors.

Target session. We have designed a target session to quantify the
usability of our assisted system compared to traditional sculpting
tools. Our collaborating artists created the initial input and reference
output, and the participants started from the same initial input to
reach the reference output. Each participant performed this task
both with and without assisted functions. Details of this study and
the results are reported in an earlier version of this work [Peng et al.
2017]. We have removed this study for this version and emphasized
more on open-creation below, as our study participants commented
that such closed-ended tasks might limit their creativity while open-
creation tasks better simulate real-world sculpting and help fuller
exploration of our system.

Open creation. The goal of this session is to observe participant
behaviors and identity merits and issues of our systems. Since dig-
ital sculpting is a flexible art form to express various creativities,
we do not enforce pre-defined requirements for this session. Par-
ticipants are encouraged to explore various functions and perform
open-ended sculpting using our system, with personalized and un-
constrained degree of repetitions.

Interview. In the final session, we collect feedbacks from each
participant on different aspects on our assisted interactive system,
including individual functions, overall satisfaction, and open-ended
feedbacks.

7 RESULTS
Subjective satisfaction. Figure 18 summarizes the subjective feed-

backs about the individual features, easiness to use, and overall
satisfaction. Overall, our prototype system has received positive
opinions on satisfaction and easiness to use. Among various modes,
hint, especially with context analysis, receives the highest rating;
clone, lock, and propagation come next; camera control is considered

1

2

3

4

5

6

7
individual functions

overall satisfaction

easy to use

 hint
(-context)

 propa-
 gation

 clone locking camera easy
to use

 hint
(+context)

 overall
satisfaction

Fig. 18. Subjective feedbacks from 8 participants in a 7-Likert scale on individ-
ual functions, easiness to use, and overall satisfaction, expressed as mean ±
standard error.

least useful. More detailed study results are recorded in Appendix A.

Sample outputs. Figure 19 show sample outputs from our user
study participants. Our assisted system can help them produce
3D models with good quality and diverse styles. The ratio of auto-
complete to total number of edits depends on the detectable amounts
of repetitions, ranging from 21% for Figure 19e to 54% for Figure 19q.
Please refer to our supplementary videos for recorded actions.

Stroke patterns. Our method also supports other stroke patterns
such as self-intersections and aggregates, as shown in Figure 20.
Even though in sculpting practice, such stroke patterns are less
frequently used, we support such patterns inherently to help users
sculpt some special patterns if needed.

Hierarchical editing. Many existing methods such as [Maximo
et al. 2011; Zelinka and Garland 2004] can detect similar geometry.
However, such type of approaches might not have sufficient speed
for interactive suggestions and capability for dynamic changes. Our
workflow-based method deals with key correspondences detection
and geometry processing at the same time. An example is shown in
Figure 21.

Workflow clone versus geometry clone. As sculpting is an accumu-
lative process, it is common for users to perform additive cloning
over existing shapes of the target regions. Capability-wise, our work-
flow clone keeps track of dynamic geometry changes, and supports
additive cloning, such as detail additions or overlapping strokes.
These are difficult if not impossible for pure geometry-based meth-
ods such as [Takayama et al. 2011], which assumes that the initial
clone target geometry should be completely replaced by the copy
source. Speed-wise, our interactions are in real-time while many
pure geometry methods are unsuitable for instant interactions, e.g.
the cost of re-stamping new source location in [Takayama et al.
2011] makes it difficult for continuous interactive sculpting. See
Figure 22 for examples.

ACM Trans. Graph., Vol. 37, No. 4, Article 132. Publication date: August 2018.

Autocomplete 3D Sculpting • 132:13

(a) 466/284 op, 22 m (b) 512/286 op, 27 m (c) 496/442 op, 29 m (d) 576/364 op, 35 m (e) 346/92 op, 20 m

(f) 251/136 op, 16 m (g) 236/146 op, 18 m (h) 648/502 op, 38 m (i) 240/204 op, 21 m (j) 326/198 op, 26 m

(k) 216/184 op, 20 m (l) 260/204 op, 22 m (m) 464/328 op, 35 m (n) 232/218 op, 24 m (o) 432/206 op, 32 m

(p) 250/142 op, 23 m (q) 162/188 op, 15 m (r) 228/176 op, 21 m (s) 268/214 op, 26 m (t) 292/184 op, 24 m

Fig. 19. Sample outputs from our participants, all starting from a sphere. Denoted with each output are the following statistics: number of manual sculpting
strokes, number of autocomplete strokes, and total authoring time in minutes. Please refer to the supplementary videos for recorded modeling sessions.

8 LIMITATIONS AND FUTURE WORK
We present an autocomplete 3D sculpting system that can reduce
input labor and enhance output quality, especially for novices, and
demonstrate that the addition of dynamic workflows can effectively
augment static geometry for interactive model creation. The auto-
complete prototype targets repetitive operations, and falls back to
traditional sculpting for non-repetitive operations.

We propose an automatic camera control mode following work-
flow suggestions. This is a very basic mode and yet conservative
enough to avoid user disorientation. Additional automatic camera
controls are possible from the data and method perspectives, but
warrant further user studies.

Our system can make aggressive predictions and let users decide
whether or not to accept borderline hints, as exemplified in Figure 23.

ACM Trans. Graph., Vol. 37, No. 4, Article 132. Publication date: August 2018.

132:14 • Mengqi Peng彭梦琪, Jun Xing邢骏, and Li-Yi Wei魏立一

(a) self-intersections (b) aggregates

Fig. 20. Stroke pattern variety. Our method can also support stroke patterns
such as self-intersections in (a) and aggregates in (b).

(a) hierarchy #1

A1

A2
A3
A4

(b) after accept in (a)

b1
b2B1

B2
B3

B4

(c) editing before (d)

(d) hierarchy #2 (e) hierarchy #3 (f) hierarchy #4

Fig. 21. Workflow-assisted hierarchical editing example. Static geometry
analysis can detect similarity in completed shapes such as points A1,2,3,4
in (b), but not intermediate dynamically changes as (c). In contrast, our
method can detect the similarity between b1 and b2 relative to B1 and B2
to help provide predictions over B3 and B4 in (d).

(a) first target (b) overlapped target (c) result

Fig. 22. Clone re-application. Via workflow clone, users can copy the same
source in red over overlapping target regions for additive cloning.

s1
s2
s3
s4
s5

(a) surface hints

f1
f2

(b) freeform hints

Fig. 23. Limitation cases. Our predictions can be overly aggressive around
areas with more geometry differences, such as the surface hints in (a) and
the freeform hints in (b). Specificalaly, s5 and f2 are aggressively suggested
over regions quite different from others (s1,2,3,4 and f1) to let users decide
whether or not to accept.

We plan to explore other geometry and topology features for more
accurate correlation between workflow and geometry. To further
improve prediction accuracy, instead of manually crafted algorithms,
we plan to investigate machine learning approaches that analyze
user feedbacks (whether they accept, partially accept, or ignore the
suggestions) for continuous training our prediction models.

Within the scope of this project we have focused on a single user
within a single modeling session. The general ideas and specific
methods can be extended to multiple users for crowdsourcing and
tutorials as well as multiple sessions for individual stylization. A
potential future work is to integrate multi-scale hierarchy structure
in collaborative sculpting [Calabrese et al. 2016] for autocomplete
across multiple users.
Our current system supports only single-layer surface mesh

sculpting. A future direction is to explore alternative representa-
tions such as multi-layers for stratified [Calabrese et al. 2017] and
voxels for volumetric [Wang and Kaufman 1995] materials, whose
additional complexity can benefit even more from autocompletes
than single-layer surface sculpting.
We focus on 3D sculpting as it is a very popular and flexible

form of model creation. Digital sculpting is mainly for creating
organic shapes [Calabrese et al. 2016; Chen et al. 2014; Denning
et al. 2015]. We have applied our system for less organic, man-made
objects as shown in Figures 19p to 19t, but the precision is less than
hard-surface modeling tools such as AutoCAD. A future work is
to extend autocomplete for other forms of 3D modeling, such as
mechanical objects that require higher precisions in geometry, and
VR brushing that operates more in 3D spaces than object surfaces.

ACKNOWLEDGMENTS
We would like to thank our user study participants for their time
and feedbacks, and the anonymous reviewers for their valuable
suggestions. This work has been partially supported by Hong Kong
RGC general research fund 17202415.

ACM Trans. Graph., Vol. 37, No. 4, Article 132. Publication date: August 2018.

Autocomplete 3D Sculpting • 132:15

REFERENCES

Autodesk. 2014. Mudbox. (2014). http://www.autodesk.com/products/mudbox/.
Seok-Hyung Bae, Ravin Balakrishnan, and Karan Singh. 2008. ILoveSketch: As-natural-

as-possible Sketching System for Creating 3D Curve Models. In UIST ’08. 151–160.
Seok-Hyung Bae, Ravin Balakrishnan, and Karan Singh. 2009. EverybodyLovesSketch:

3D Sketching for a Broader Audience. In UIST ’09. 59–68.
Blender Foundation. 2016. Blender. (2016).
Martin Bokeloh, Michael Wand, Vladlen Koltun, and Hans-Peter Seidel. 2011. Pattern-

aware Shape Deformation Using Sliding Dockers. ACM Trans. Graph. 30, 6, Article
123 (2011), 10 pages.

Claudio Calabrese, Marco Fratarcangeli, and Fabio Pellacini. 2017. sLayer: a System for
Multi-Layered Material Sculpting.

Claudio Calabrese, Gabriele Salvati, Marco Tarini, and Fabio Pellacini. 2016. cSculpt:
A System for Collaborative Sculpting. ACM Trans. Graph. 35, 4, Article 91 (2016),
8 pages.

Siddhartha Chaudhuri and Vladlen Koltun. 2010. Data-driven Suggestions for Creativity
Support in 3D Modeling. ACM Trans. Graph. 29, 6, Article 183 (2010), 10 pages.

Hsiang-Ting Chen, Tovi Grossman, Li-Yi Wei, Ryan M. Schmidt, Björn Hartmann,
George Fitzmaurice, and Maneesh Agrawala. 2014. History Assisted View Authoring
for 3D Models. In CHI ’14. 2027–2036.

Hsiang-Ting Chen, Li-Yi Wei, and Chun-Fa Chang. 2011. Nonlinear Revision Control
for Images. ACM Trans. Graph. 30, 4, Article 105 (2011), 10 pages.

Hsiang-Ting Chen, Li-Yi Wei, Björn Hartmann, and Maneesh Agrawala. 2016. Data-
driven Adaptive History for Image Editing. In I3D ’16. 103–111.

Daniel Cohen-Or and Hao Zhang. 2016. From Inspired Modeling to Creative Modeling.
Vis. Comput. 32, 1 (2016), 7–14.

Fernando De Goes and Doug L. James. 2017. Regularized Kelvinlets: Sculpting Brushes
Based on Fundamental Solutions of Elasticity. ACM Trans. Graph. 36, 4, Article 40
(2017), 11 pages.

Jonathan D. Denning, William B. Kerr, and Fabio Pellacini. 2011. MeshFlow: Interactive
Visualization of Mesh Construction Sequences. ACM Trans. Graph. 30, 4, Article 66
(2011), 8 pages.

Jonathan D. Denning and Fabio Pellacini. 2013. MeshGit: Diffing and Merging Meshes
for Polygonal Modeling. ACM Trans. Graph. 32, 4, Article 35 (2013), 10 pages.

Jonathan D. Denning, Valentina Tibaldo, and Fabio Pellacini. 2015. 3DFlow: Continuous
Summarization of Mesh Editing Workflows. ACM Trans. Graph. 34, 4, Article 140
(2015), 9 pages.

David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steven Worley.
2002. Texturing and Modeling: A Procedural Approach (3rd ed.). Morgan Kaufmann
Publishers Inc.

Arnaud Emilien, Ulysse Vimont, Marie-Paule Cani, Pierre Poulin, and Bedrich Benes.
2015. WorldBrush: Interactive Example-based Synthesis of Procedural Virtual
Worlds. ACM Trans. Graph. 34, 4, Article 106 (2015), 11 pages.

Lubin Fan, Ruimin Wang, Linlin Xu, Jiansong Deng, and Ligang Liu. 2013. Modeling by
Drawing with Shadow Guidance. Computer Graphics Forum (Proc. Pacific Graphics)
23, 7 (2013), 157–166.

Chi-Wing Fu, Jiazhi Xia, and Ying He. 2010. LayerPaint: A Multi-layer Interactive 3D
Painting Interface. In CHI ’10. 811–820.

Hongbo Fu, Shizhe Zhou, Ligang Liu, and Niloy J. Mitra. 2011. Animated Construction
of Line Drawings. ACM Trans. Graph. 30, 6, Article 133 (2011), 10 pages.

Thomas Funkhouser, Michael Kazhdan, Philip Shilane, Patrick Min, William Kiefer,
Ayellet Tal, Szymon Rusinkiewicz, and David Dobkin. 2004. Modeling by Example.
ACM Trans. Graph. 23, 3 (2004), 652–663.

Raul Fernandez Hernandez. 2011. Dynamic Subdivision Sculpting. (2011).
Ruizhen Hu, Oliver van Kaick, Bojian Wu, Hui Huang, Ariel Shamir, and Hao Zhang.

2016. Learning How Objects Function via Co-analysis of Interactions. ACM Trans.
Graph. 35, 4, Article 47 (2016), 13 pages.

Shi-Min Hu, Kun Xu, Li-Qian Ma, Bin Liu, Bi-Ye Jiang, and Jue Wang. 2013. Inverse
Image Editing: Recovering a Semantic Editing History from a Before-and-after Image
Pair. ACM Trans. Graph. 32, 6, Article 194 (2013), 11 pages.

Takeo Igarashi and John F. Hughes. 2001. A Suggestive Interface for 3D Drawing. In
UIST ’01. 173–181.

Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. 1999. Teddy: A Sketching
Interface for 3D Freeform Design. In SIGGRAPH ’99. 409–416.

Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman, Shengdong Zhao, and George
Fitzmaurice. 2014. Draco: Bringing Life to Illustrations with Kinetic Textures. In
CHI ’14. 351–360.

Rubaiat Habib Kazi, Takeo Igarashi, Shengdong Zhao, and Richard Davis. 2012. Vignette:
Interactive Texture Design and Manipulation with Freeform Gestures for Pen-and-
ink Illustration. In CHI ’12. 1727–1736.

Matt Kloskowski. 2010. Cloning With a Preview in Photoshop CS4. (2010). http:
//www.photoshop.com/tutorials/4305.

David Kurlander and Eric A. Bier. 1988. Graphical Search and Replace. In SIGGRAPH
’88. ACM, 113–120.

David Kurlander and Steven Feiner. 1992a. A History-based Macro by Example System.
In UIST ’92. ACM, 99–106.

David Kurlander and Steven Feiner. 1992b. Interactive Constraint-based Search and
Replace. In CHI ’92. ACM, 609–618.

Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra. 2005. Texture Optimization
for Example-based Synthesis. ACM Trans. Graph. 24, 3 (2005), 795–802.

Jerry Liu, Fisher Yu, and Thomas A. Funkhouser. 2017. Interactive 3D Modeling with a
Generative Adversarial Network. CoRR abs/1706.05170 (2017).

Zhaoliang Lun, Evangelos Kalogerakis, Rui Wang, and Alla Sheffer. 2016. Functionality
Preserving Shape Style Transfer. ACM Trans. Graph. 35, 6, Article 209 (2016),
14 pages.

Chongyang Ma, Li-Yi Wei, Sylvain Lefebvre, and Xin Tong. 2013. Dynamic Element
Textures. ACM Trans. Graph. 32, 4, Article 90 (2013), 10 pages.

André Maximo, Robert Patro, Amitabh Varshney, and R Farias. 2011. A robust and
rotationally invariant local surface descriptor with applications to non-local mesh
processing. Graphical Models 73, 5 (2011), 231–242.

Niloy J. Mitra, Leonidas J. Guibas, and Mark Pauly. 2006. Partial and Approximate
Symmetry Detection for 3D Geometry. ACM Trans. Graph. 25, 3 (2006), 560–568.

Niloy J. Mitra, Michael Wand, Hao Zhang, Daniel Cohen-Or, and Martin Bokeloh. 2013.
Structure-Aware Shape Processing. In Eurographics 2013 - State of the Art Reports.

Mathieu Nancel and Andy Cockburn. 2014. Causality: A Conceptual Model of Interac-
tion History. In CHI ’14. 1777–1786.

Gen Nishida, Ignacio Garcia-Dorado, Daniel G. Aliaga, Bedrich Benes, and Adrien
Bousseau. 2016. Interactive Sketching of Urban Procedural Models. ACM Trans.
Graph. 35, 4, Article 130 (2016), 11 pages.

Michaël Ortega and Thomas Vincent. 2014. Direct Drawing on 3D Shapes with Auto-
mated Camera Control. In CHI ’14. 2047–2050.

Mengqi Peng, Jun Xing, and Li-Yi Wei. 2017. Autocomplete 3D Sculpting. CoRR
abs/1703.10405 (2017). arXiv:cs.GR/1703.10405

Patrick Pérez, Michel Gangnet, and Andrew Blake. 2003. Poisson Image Editing. ACM
Trans. Graph. 22, 3 (2003), 313–318.

Pixologic. 2011. Sculptris. (2011).
Pixologic. 2015. ZBrush. (2015).
Gabriele Salvati, Christian Santoni, Valentina Tibaldo, and Fabio Pellacini. 2015. Mesh-

Histo: Collaborative Modeling by Sharing and Retargeting Editing Histories. ACM
Trans. Graph. 34, 6, Article 205 (2015), 10 pages.

Christian Santoni, Claudio Calabrese, Francesco Di Renzo, and Fabio Pellacini. 2016.
SculptStat: Statistical Analysis of Digital Sculpting Workflows. CoRR abs/1601.07765
(2016).

Ryan Schmidt. 2013. Stroke Parameterization. Computer Graphics Forum 32, 2pt2 (2013),
255–263.

Ryan Schmidt, Cindy Grimm, and Brian Wyvill. 2006. Interactive Decal Compositing
with Discrete Exponential Maps. ACM Trans. Graph. 25, 3 (2006), 605–613.

Ryan Schmidt and Karan Singh. 2010. Meshmixer: An Interface for Rapid Mesh Com-
position. In SIGGRAPH ’10 Talks. Article 6, 1 pages.

Adriana Schulz, Ariel Shamir, David I. W. Levin, Pitchaya Sitthi-amorn, and Wojciech
Matusik. 2014. Design and Fabrication by Example. ACM Trans. Graph. 33, 4, Article
62 (2014), 11 pages.

Ben Shneiderman. 2007. Creativity Support Tools: Accelerating Discovery and Innova-
tion. Commun. ACM 50, 12 (2007), 20–32.

Qian Sun, Long Zhang, Minqi Zhang, Xiang Ying, Shi-Qing Xin, Jiazhi Xia, and Ying
He. 2013. Texture Brush: An Interactive Surface Texturing Interface. In I3D ’13.
153–160.

Ryo Suzuki, Tom Yeh, Koji Yatani, and Mark D. Gross. 2017. Autocomplete Textures for
3D Printing. ArXiv e-prints (2017). arXiv:cs.HC/1703.05700

Kenshi Takayama, Ryan Schmidt, Karan Singh, Takeo Igarashi, Tamy Boubekeur, and
Olga Sorkine. 2011. Geobrush: Interactive mesh geometry cloning. In Computer
Graphics Forum, Vol. 30. 613–622.

Jianchao Tan, Marek Dvorožňák, Daniel Sýkora, and Yotam Gingold. 2015. Decompos-
ing Time-lapse Paintings into Layers. ACM Trans. Graph. 34, 4, Article 61 (2015),
10 pages.

Steve Tsang, Ravin Balakrishnan, Karan Singh, and Abhishek Ranjan. 2004. A Suggestive
Interface for Image Guided 3D Sketching. In CHI ’04. 591–598.

Sidney W. Wang and Arie E. Kaufman. 1995. Volume Sculpting. In I3D ’95. 151–ff.
Jun Xing, Hsiang-Ting Chen, and Li-Yi Wei. 2014. Autocomplete Painting Repetitions.

ACM Trans. Graph. 33, 6, Article 172 (2014), 11 pages.
Jun Xing, Li-YiWei, Takaaki Shiratori, and Koji Yatani. 2015. Autocomplete Hand-drawn

Animations. ACM Trans. Graph. 34, 6, Article 169 (2015), 11 pages.
Ya-Ting Yue, Xiaolong Zhang, Yongliang Yang, Gang Ren, Yi-King Choi, and Wenping

Wang. 2017. WireDraw: 3D Wire Sculpturing Guided with Mixed Reality. In CHI
’17. 3693–3704.

Steve Zelinka and Michael Garland. 2004. Similarity-based Surface Modelling Using
Geodesic Fans. In SGP ’04. 204–213.

ACM Trans. Graph., Vol. 37, No. 4, Article 132. Publication date: August 2018.

http://www.autodesk.com/products/mudbox/
http://www.photoshop.com/tutorials/4305
http://www.photoshop.com/tutorials/4305
http://arxiv.org/abs/cs.GR/1703.10405
http://arxiv.org/abs/cs.HC/1703.05700

132:16 • Mengqi Peng彭梦琪, Jun Xing邢骏, and Li-Yi Wei魏立一

A DETAILED USER FEEDBACK

Table 2. Subjective feedback from 8 participants in a 7-Likert scale on whether
it is easy to use this assisted system, and overall satisfaction.

user easy to use overall satisfaction
P1 6 6
P2 6.5 6
P3 5.5 5.5
P4 7 6.5
P5 6 6.5
P6 5.5 5.5
P7 6 6.5
P8 6 6

Table 3. Subjective feedback from 8 participants in a 7-Likert scale for various
modes of our system.

user hint propa- clone camera lockw/o context w/ context gation
P1 5.5 6.5 5.5 6 5 6
P2 6 7 6 6.5 5.5 5.5
P3 6 6.5 5.5 5.5 6 4.5
P4 6 7 6 6 5.5 6
P5 5.5 6.5 6 6.5 5 6
P6 5.5 6 6 5.5 4 6
P7 6 7 7 6.5 5.5 6.5
P8 6 6.5 6.5 7 5 6

Below are more detailed participant feedbacks for our user study.
Q: Do you think the assisted system easy to use? And what is

your overall scoring for this system?
See Table 2.
Q: What is your score for each function we provided in the sys-

tem?
See Table 3.
Q: Do you have prior modeling/sculpting experiences? What’s

your comments and suggestions for this autocomplete system, such
as what you like and what you think can be improved? (If you
have prior modeling/sculpting experience, feel free to compare the
experiences via our system with your prior practice.)

Experienced users. P1: The sculpting tools are similar to what are
provided by Blender sculpting mode, but the autocomplete, prop-
agation, cloning etc. are special here. Though being new, they are
handy to grasp since I already know those effects such as grabbing
and so on. The UI video tutorial is very helpful for me know what
is the difference between yours with Blender. I like the propaga-
tion, copy and suggestion function the most. And they are easy to
use/understand. In sum, the proposed system is helpful to reduce
my efforts when creating models, and the yellow future ones can
also stimulate more future edits. I think the camera function can
be improved, it can move around with the hints now, but when
there are no hints, can you also provide some other form of Autos?
The sculpting brushes are similar to Blender, it will be nice if you
provide a plug-in for Blender community.

P2: (1) Comments and compare with my prior experience: The
system you show is interesting, the sculpting is similar to other
sculpting software, but it is also different. The auto future editing is
an interesting idea, and useful for me to directly accept the guesses
if I think they meet my goal. The clone and propagate functions
can help complete patterns containing many strokes with a few
edits. The lock tool can help protect previous structures. They are
intuitive and useful. (2) Suggestions: Besides mesh sculpting, it will
be nice if you also provide guesses for the final appearance editing.
You can also provide more rendering modes to beautify the final
models.

Novice users. P3: I have limited 3D software experiences. But at
the same time, your video is vivid to let me know how to use your
system. What I like: I think the "hints", "cloning", and "propagating
edits" are very helpful; they are shown to be transparent color so my
own operations will not be influenced by your "hints". I think maybe
you can provide some default profiles/models so I can combine them
to create more complex models.
P4: No, I do not know sculpting too much. The yellow autos

are entertaining and are trying to predict what I want to do and
have good quality, especially the hints and propagation functions
you taught. In terms of this study, the tutorials you show help me
to know what is sculpting and how to use your UI buttons and
functions. Overall, I learned sculpting to create models and like this
sculpting test.
P5: Yes, I used Sculptris before during my courses. The brushes

you gave me is similar to Sculptris, but the yellow suggestions are
only available in your interface, and helps in particular for repetitive
and continuous edits. You can provide other tools like Mask and
more material default settings to make your own tool more powerful.
P6: Yes, I used some modeling experiences before. The software

you propose is easy to learn. The auto design concept is cool. I like
the yellow autocompletes provided via context hints and propaga-
tions. It is helpful to generate shapes with many details.
P7: I used Sketchfab to create architecture models before. The

models are different from architecture models, the operations are
softer and less mechanical. The auto functions you show are simple
to operate and helpful, the predictions are just suggestions thus I
can agree to accept or disagree to pass your suggestions. I like the
Cloning the most, it is like copy and paste but I can adjust the target
sizes and effects. Yellow suggestions with so-called "context" have
higher quality. Camera is a heavy operation similar to Sketchfab,
the flying with yellow strokes camera mode is intuitive but might
have higher potential space for your future works to make it more
advanced.
P8: No, do not know modeling or sculpting much before. The

hints/copy/propagation functions are easy to understand, I like the
cloning the most, I can re-use my patterns for multiple times.

ACM Trans. Graph., Vol. 37, No. 4, Article 132. Publication date: August 2018.

	Abstract
	1 Introduction
	2 Previous Work
	3 Design Goals
	4 User Interface
	4.1 Hint
	4.2 Workflow Clone
	4.3 Camera Control
	4.4 Additional Features

	5 Method
	5.1 Representation
	5.2 Measurement
	5.3 Parameterization
	5.4 Synthesis
	5.5 Context Analysis
	5.6 Deployment

	6 User Study
	7 Results
	8 Limitations and Future Work
	Acknowledgments
	References
	A Detailed User Feedback

